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In this paper, the domain expert system, that a generator of intelligent tutoring systems (ITS) 
includes with the applications it produces, will be presented. This system, MeT (Methodology 
Tutor), is responsible for the description and teaching of the procedural domain knowledge (called 
methodology) of the ITS. The knowledge handled by the system is represented with frames. MeT 
operates in two modes: during authoring mode, several editors are provided to support the authors 
in the description of the methodology that will be taught. In tutoring mode, three agents are 
provided: a guide for the simulation of the methodology evolution, a learn-by-discovery agent that 
comments on the students' actions and a judge that validates the students' selections. Finally, a 
part of the procedural knowledge of an example application is presented. 

1. INTRODUCTION 

GENITOR [6] is a generator of intelligent 
tutoring systems (ITSs) that use coaching and 
simulation techniques for knowledge transfer. 
Applications developed with the system 
employ two expert systems for the transfer of 
declarative and procedural domain knowledge 
[1] .The form in which this knowledge is stored 
determines the ways it can be used. No 
general form suitable for representation of all 
types of knowledge exists [10]. Of the several 
knowledge representation schemes that have 
been proposed in the past, production rules 
and frame networks are the most popular 
ones. Production rules have been widely 
adopted for domain knowledge representation 
[1,3], both because they are easy for humans 
to understand, since they come close to the 
human way of reasoning, and can provide 

rudimentary explanations of the system 
reasoning process. Frames are an equivalent 
(in representation terms) way of grouping 
information. Each frame is a record of "slots" 
and 'tillers" [7] and can be thought of as a 
complex node in a network. Frame systems 
use abstract representations of knowledge in 
order to reason about classes of objects. 

In this paper, the design of an expert 
system for teaching procedural knowledge is 
presented. The procedural knowledge in 
GENITOR terms is called "methodology", and 
the presented expert system is the 
Methodology Tutor (MET). MeT employs 
simulation to allow for learning in a problem- 
solving context, enabling the application of 
this knowledge in real-life. Simulation-based 
domains are usually represented with object 
networks in association with rules and 
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Figure 1: The functional architecture of MeT 

constraints [2,4].Their problem is mainly the 
difficulty of integration with the other 
components of the tutoring system, although 
this did not come up during GENITOR design. 

In the next section, the architecture of 
MeT, together with the adopted knowledge 
representation schemes will be presented. 
Then, the system-user interaction in both 
operation modes (authoring and tutoring) is 
described. An example knowledge base is 
subsequently described, and the paper 
concludes with the future research directions 
of the authors. 

consumed). In this way, a partial ordering in 
the form of a dependency and precedence 
graph of the activities is derived by MeT, which 
also ensures that at least one deadlock-free 
traversal of the graph exists. 

2.1 Architectural design 
MeT consists of two subsystems (Figure 1): 

the authoring subsystem, which provides the 
tools that the authors can use in order to 
describe the methodology to be taught, and 
the runtime subsystem, which is used for the 
presentation and tutoring of the methodology. 

2. THE METHODOLOGY TUTOR (MET) 

A methodology is any procedure that 
consists of distinct, partially ordered tasks, 
actions to carry out each task and results of 
each action [8]. Such a methodology has a 
well-defined structure that consists of several 
layers of groups of activities (phases and 
subphases), activities that make up a group 
and control activities that mark the termination 
of a group. With each activity, artifacts are 
produced; these have the meaning of inputs 
(prerequisites) or outputs (objectives), 
respectively, of the activity. In order for an 
artifact to be produced, other artifacts must be 
already existing (some of them may even be 

2.2 Knowledge representation 
The methodology elements manipulated by 

MeT are represented with frame objects. 
These are instantiations of classes that are 
structured according to the inheritance 
schema of Figure 2. 

All kinds of frames have a class and an is-a 
field, which store the name of the class and its 
parent in the inheritance relationship. The 
values of these two fields are fixed and can not 
be changed. Instead, slots are used to store 
changing information. All classes have three 
attribute slots in common: identifier, which 
indicates the author-defined name that the 
class assumes in the methodology which the 
model instantiates, label, which identifies the 
author-defined instantiation of the class object, 
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class: object 
is_a: object 
- - s l o t s  --- 
identifier:  string 
label:  string 

class: artifact class: activity 
is_a: object is_a: object 
- - s l o t s  . . . .  slots --- 
state: {existing, not existing} state: {started, not started, terminated} 

class: group of  activities 
is_a: activity 
---slots --- 
level: integer 
rank:  integer 

Figure 2: The inheritance schema and the structure of the frames used by MeT 

and state, which indicates the state of the 
class. The value of the latter slot is default in 
the beginning but is changed by the system 
along the simulation. Permitted slot values for 
the classes activity and group of activities are 
"not started", "started" and '~erminated"; for 
the class artifact are "not existing" and 
"existing". 

The class group of activities has the 
additional attributes level and rank. The values 
of the level and rank slots are numbers 
ranging from 0 to n, n~N*. These values are 
specified by the authors during the authoring 
process and cannot be changed during the 
simulation. The rank slot indicates explicit 
ordering between several groups of activities. 
Use of explicit ordering is optional, since 
authors may implicitly specify ordering of 
groups of activities with the appropriate use of 
artifacts. The level slot offers the authors the 
ability to create groups and subgroups of 
activities. 

3. SYSTEM-USER INTERACTION 

Two classes of users, each with different 
characteristics and requirements, interact with 
MeT: authors and students (trainees). Different 
operation modes and different interfaces are 
provided for each class. Both interfaces adopt 
common interaction metaphor features which 
have been described with the IMFG model [5]. 

3.1 Authoring mode 
MeT supports either top-down (phases, 

subphases, activities, artifacts) or bottom-up 
(that is, starting from the artifacts) 
methodology specification. A mixed process 
may be adopted as well. Several functions that 
enable the authors define the structure and 
explicit ordering of activities and groups of 
activities, the artifacts each activity produces 
and the artifacts each artifact needs or 
consumes in order to be produced. In 
addition, several authoring functions are 
provided to support authors during 
methodology validation. These provide 

daisy
Rectangle



858 IJD. Zaharakis et al. / Microprocessing and Microprogranuning 40 (1994) 855-860 

class: artifact 
is..a: object 
---slots-- 
state: {existing, not existing} 

class:object 
is..a: object 
---slots-- 
Identifier: string 
label: string 

class: activity 
is.a: object 
- -s lots--  
state: {started, not staded, terminate¢ 

Instance: ip15 instance: ip5 
Is a:~ifact 

i$ a: artifact ---slote--- 
----slotlP-- 
identifier, information identifier: information 

label: System Model 
label: Design Report state: existing 
state: not existing 

instance: act3 class:group of activities 
is a:activity lea:  activity 
- -s lots--  mslots--  
Identifier.activity level: integer 
label: Requirements Definition 
state: started 

I 
Instance: phsl 
i=..a:group of activities 
---=lote-- 
identifier:, phase 
labelRequirements & analysis Definition 
state: staded 
level: 1 

Figure 3: The instances of the frames used in the example 

answers on whether a group of activities can 
be started, which activities it contains and 
whether these can be started or executed, and 
in general, whether a methodology element 
can reach a certain state or be produced at all. 
In any case, MeT supports a prototyping 
facility that enables authors to test the 
appearance and efficiency of the methodology 
under development. 

In order to validate the design of the 
methodology, the system uses internally a 
Petri Net-based model. Specifically, the 
methodology structure is transformed into an 
Individual Token Net, with a general high-level 
Petri Net model. Activities and control activities 
correspond to transitions, while artifacts are 
modeled with places. The advantages of this 

approach are that well-documented analysis 
methods (like coverability tree, incidence 
matrix etc) can be used to ensure that the 
described methodology is deadlock-free and 
live [9]. 

3.2 Tutoring mode 
During tutoring mode, the runtime 

subsystem of MeT presents the student with a 
simulation of the methodology to be taught, 
The dialog is based on problem solving: the 
problem posed each time is to find the correct 
activity that must be taken next in order to 
advance inside the methodology structure. 
The system or the student must choose 
among the set of all activities of the 
methodology. During this mode, MeT may 
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employ one of the following three agents: 
guide, coach, judge. 

The task of MeT-Guide (G-MeT) is to simply 
present the procedural knowledge to the 
students. To this end, it "guides" them through 
a simulation of the methodology evolution by 
selecting itself each time the correct activity. 
The progress within the methodology is 
visualized using animated charts and 
diagrams. The system presents the valid 
alternatives at each step, and also produces a 
description of the new state. The students 
have several operations at their disposal, like 
pause, continue and stop to control simulation 
flow, move to, in order to select the (future or 
past) starting point of the simulation, where 
am I, to get a description of the current state, 
why, to get justification of the system actions, 
inventory, to see the names and quantities of 
the artifacts been produced so far. 

MeT-Coach (C-MeT) supports a learn-by- 
discovery process of the methodology. It is 
the students who must now select the next 
activity from the set of all methodology 
activities. The role of C-MeT is to guide the 
students by commenting on their selections, 
responding to their commands and assuming 
control when they appear to be lost. This 
mixed-initiative control scheme is based on an 
encoding of students mistakes, which, 
combined with the student model, permits a 
precise diagnosis of students misconceptions 
and of the adaptation of the remedy strategy 
to their requirements and capabilities. 
Operations "pause", "continue", "stop", 
"inventory", '~here am I" and '~vhy" are also 
supported in this mode, while the verbose 
level is decided by the system itself after 
consulting the student model. In place of 
command "move to", C-MeT offers commands 
'~hat if', which appears when more than one 
alternatives exist for the next step, and which 
permits the students to explore all possible 
alternatives (by conducting a simulation of the 
possible futures of the methodology 
simulation), and "show me", which is a call of 

the students to C-MeT for the presentation and 
justification of the correct solution. 

Finally, MeT-Judge (J-MeT) leaves control 
of the simulation entirely at students hands, by 
adopting a role of "judge" of their selections. J- 
MeT only informs students on the validity of 
their selections, using messages of minimal 
semantic content. The only available 
command is "inventory", but, depending on 
authors choice, commands "pause" and 
"background" may also be available. 

4. AN EXAMPLE 

As an example, in Figure 3, a tree-like 
frame structure is shown for a part of the 
domain knowledge of an application 
developed with GENITOR that teaches the 
Waterfall Model of Software Engineering. This 
methodology consists of five steps called 
"phases" (a phase is modeled with a frame 
that is-a group of activities having slots 
identifier=phase and level= 1): Requirements 
Analysis & Definition, System & Software 
Design, Implementation & Unit Testing, 
Integration & System Testing, and Operation & 
Maintenance. The current phase is 
Requirements Analysis & Definition (as its 
label slot states); its state slot has the value 
"started". 

The activity being carried out, which also 
belongs to this phase, is Requirements 
Definition. The frame that represents this 
activity has state="started". As far as artifacts 
are concerned, two of them are represented: 
one, System Model, has been produced 
during a previous activity (thus, its state is 
"existing"), and the other, Design Report will 
be produced by a future activity (thus, its state 
is "not existing"). 

All the slots in the frame instances have a 
certain value that is unique for each instance. 
While the author decsribes the methodology 
that will be taught, the system automatically 
constructs the inheritance scheme and fills the 
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appropriate slots. The values of certain slots 
change with execution of the methodology 
(i.e. slot state). 

5. CONCLUSIONS 

A part of the domain expert system of 
GENITOR that is responsible for the tutoring of 
procedural knowledge has been presented. 
MeT cooperates with the declarative 
knowledge tutor of GENITOR (DeT), which is 
responsible for the presentation of units of 
learning material that support the application 
of procedural knowledge. To this end, a 
special operation (called background) is 
included in MeT tutoring interface. By using 
this operation, students can combine both 
MeT and DeT during methodology simulation 
and get a list of topics of declarative 
knowledge proposed by the system which 
relate to the current simulation state. 

Extensions that system authors are 
considering include the provision of a flexible 
structure that will enable authors describe 
procedural knowledge of differing internal 
structure and the use of an artificial neural net 
for student modeling. In addition, the provision 
of more agents during tutoring mode is 
considered. 
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