
Microprocessing
and
Microprogramming

ELSEVIER Microprocessing and Microprograrnming 40 (1994) 855-860

MeT: The Expert Methodology Tutor of GENITOR

I. D. Zaharakis a,c A.D. Kameas b,c p.E. Pintelas =,c

= Division of Computational Mathematics & Informatics, Department of Mathematics, University of
Patras, Greece

h Department of Computer Engineering & Informatics, University of Patras, Greece

c Educational Software Development Laboratory, Department of Mathematics, University of Patras,
Greece

In this paper, the domain expert system, that a generator of intelligent tutoring systems (ITS)
includes with the applications it produces, will be presented. This system, MeT (Methodology
Tutor), is responsible for the description and teaching of the procedural domain knowledge (called
methodology) of the ITS. The knowledge handled by the system is represented with frames. MeT
operates in two modes: during authoring mode, several editors are provided to support the authors
in the description of the methodology that will be taught. In tutoring mode, three agents are
provided: a guide for the simulation of the methodology evolution, a learn-by-discovery agent that
comments on the students' actions and a judge that validates the students' selections. Finally, a
part of the procedural knowledge of an example application is presented.

1. INTRODUCTION

GENITOR [6] is a generator of intelligent
tutoring systems (ITSs) that use coaching and
simulation techniques for knowledge transfer.
Applications developed with the system
employ two expert systems for the transfer of
declarative and procedural domain knowledge
[1] .The form in which this knowledge is stored
determines the ways it can be used. No
general form suitable for representation of all
types of knowledge exists [10]. Of the several
knowledge representation schemes that have
been proposed in the past, production rules
and frame networks are the most popular
ones. Production rules have been widely
adopted for domain knowledge representation
[1,3], both because they are easy for humans
to understand, since they come close to the
human way of reasoning, and can provide

rudimentary explanations of the system
reasoning process. Frames are an equivalent
(in representation terms) way of grouping
information. Each frame is a record of "slots"
and 'tillers" [7] and can be thought of as a
complex node in a network. Frame systems
use abstract representations of knowledge in
order to reason about classes of objects.

In this paper, the design of an expert
system for teaching procedural knowledge is
presented. The procedural knowledge in
GENITOR terms is called "methodology", and
the presented expert system is the
Methodology Tutor (MET). MeT employs
simulation to allow for learning in a problem-
solving context, enabling the application of
this knowledge in real-life. Simulation-based
domains are usually represented with object
networks in association with rules and

0165.6074/94/$07.00 © 1994 - Elsevier Science B.V. All fights reserved.
SSDI 0165-6074(94)00068-9

856 I.D. Zaharakis et al. / Microprocessing and Microprogramming 40 (1994) 855-860

Authoring Subsystem Methodology
Files

Methodology
Editors

Student
I

Tutoring Interface

I II II I

I
I Runtime

Subsystem

Authoring Interface

I
Author

Figure 1: The functional architecture of MeT

constraints [2,4].Their problem is mainly the
difficulty of integration with the other
components of the tutoring system, although
this did not come up during GENITOR design.

In the next section, the architecture of
MeT, together with the adopted knowledge
representation schemes will be presented.
Then, the system-user interaction in both
operation modes (authoring and tutoring) is
described. An example knowledge base is
subsequently described, and the paper
concludes with the future research directions
of the authors.

consumed). In this way, a partial ordering in
the form of a dependency and precedence
graph of the activities is derived by MeT, which
also ensures that at least one deadlock-free
traversal of the graph exists.

2.1 Architectural design
MeT consists of two subsystems (Figure 1):

the authoring subsystem, which provides the
tools that the authors can use in order to
describe the methodology to be taught, and
the runtime subsystem, which is used for the
presentation and tutoring of the methodology.

2. THE METHODOLOGY TUTOR (MET)

A methodology is any procedure that
consists of distinct, partially ordered tasks,
actions to carry out each task and results of
each action [8]. Such a methodology has a
well-defined structure that consists of several
layers of groups of activities (phases and
subphases), activities that make up a group
and control activities that mark the termination
of a group. With each activity, artifacts are
produced; these have the meaning of inputs
(prerequisites) or outputs (objectives),
respectively, of the activity. In order for an
artifact to be produced, other artifacts must be
already existing (some of them may even be

2.2 Knowledge representation
The methodology elements manipulated by

MeT are represented with frame objects.
These are instantiations of classes that are
structured according to the inheritance
schema of Figure 2.

All kinds of frames have a class and an is-a
field, which store the name of the class and its
parent in the inheritance relationship. The
values of these two fields are fixed and can not
be changed. Instead, slots are used to store
changing information. All classes have three
attribute slots in common: identifier, which
indicates the author-defined name that the
class assumes in the methodology which the
model instantiates, label, which identifies the
author-defined instantiation of the class object,

daisy
Rectangle

I.D. Zaharakis et al. / Microprocessing and Microprogramming 40 (1994) 855-860 857

class: object
is_a: object
- - s l o t s ---
identifier: string
label: string

class: artifact class: activity
is_a: object is_a: object
- - s l o t s slots ---
state: {existing, not existing} state: {started, not started, terminated}

class: group of activities
is_a: activity
---slots ---
level: integer
rank: integer

Figure 2: The inheritance schema and the structure of the frames used by MeT

and state, which indicates the state of the
class. The value of the latter slot is default in
the beginning but is changed by the system
along the simulation. Permitted slot values for
the classes activity and group of activities are
"not started", "started" and '~erminated"; for
the class artifact are "not existing" and
"existing".

The class group of activities has the
additional attributes level and rank. The values
of the level and rank slots are numbers
ranging from 0 to n, n~N*. These values are
specified by the authors during the authoring
process and cannot be changed during the
simulation. The rank slot indicates explicit
ordering between several groups of activities.
Use of explicit ordering is optional, since
authors may implicitly specify ordering of
groups of activities with the appropriate use of
artifacts. The level slot offers the authors the
ability to create groups and subgroups of
activities.

3. SYSTEM-USER INTERACTION

Two classes of users, each with different
characteristics and requirements, interact with
MeT: authors and students (trainees). Different
operation modes and different interfaces are
provided for each class. Both interfaces adopt
common interaction metaphor features which
have been described with the IMFG model [5].

3.1 Authoring mode
MeT supports either top-down (phases,

subphases, activities, artifacts) or bottom-up
(that is, starting from the artifacts)
methodology specification. A mixed process
may be adopted as well. Several functions that
enable the authors define the structure and
explicit ordering of activities and groups of
activities, the artifacts each activity produces
and the artifacts each artifact needs or
consumes in order to be produced. In
addition, several authoring functions are
provided to support authors during
methodology validation. These provide

daisy
Rectangle

858 IJD. Zaharakis et al. / Microprocessing and Microprogranuning 40 (1994) 855-860

class: artifact
is..a: object
---slots--
state: {existing, not existing}

class:object
is..a: object
---slots--
Identifier: string
label: string

class: activity
is.a: object
- -s lots--
state: {started, not staded, terminate¢

Instance: ip15 instance: ip5
Is a:~ifact

i$ a: artifact ---slote---
----slotlP--
identifier, information identifier: information

label: System Model
label: Design Report state: existing
state: not existing

instance: act3 class:group of activities
is a:activity lea: activity
- -s lots-- mslots--
Identifier.activity level: integer
label: Requirements Definition
state: started

I
Instance: phsl
i=..a:group of activities
---=lote--
identifier:, phase
labelRequirements & analysis Definition
state: staded
level: 1

Figure 3: The instances of the frames used in the example

answers on whether a group of activities can
be started, which activities it contains and
whether these can be started or executed, and
in general, whether a methodology element
can reach a certain state or be produced at all.
In any case, MeT supports a prototyping
facility that enables authors to test the
appearance and efficiency of the methodology
under development.

In order to validate the design of the
methodology, the system uses internally a
Petri Net-based model. Specifically, the
methodology structure is transformed into an
Individual Token Net, with a general high-level
Petri Net model. Activities and control activities
correspond to transitions, while artifacts are
modeled with places. The advantages of this

approach are that well-documented analysis
methods (like coverability tree, incidence
matrix etc) can be used to ensure that the
described methodology is deadlock-free and
live [9].

3.2 Tutoring mode
During tutoring mode, the runtime

subsystem of MeT presents the student with a
simulation of the methodology to be taught,
The dialog is based on problem solving: the
problem posed each time is to find the correct
activity that must be taken next in order to
advance inside the methodology structure.
The system or the student must choose
among the set of all activities of the
methodology. During this mode, MeT may

daisy
Rectangle

1.D. Zaharakis et al. / Microprocessing and Microprogramming 40 (1994) 855--860 859

employ one of the following three agents:
guide, coach, judge.

The task of MeT-Guide (G-MeT) is to simply
present the procedural knowledge to the
students. To this end, it "guides" them through
a simulation of the methodology evolution by
selecting itself each time the correct activity.
The progress within the methodology is
visualized using animated charts and
diagrams. The system presents the valid
alternatives at each step, and also produces a
description of the new state. The students
have several operations at their disposal, like
pause, continue and stop to control simulation
flow, move to, in order to select the (future or
past) starting point of the simulation, where
am I, to get a description of the current state,
why, to get justification of the system actions,
inventory, to see the names and quantities of
the artifacts been produced so far.

MeT-Coach (C-MeT) supports a learn-by-
discovery process of the methodology. It is
the students who must now select the next
activity from the set of all methodology
activities. The role of C-MeT is to guide the
students by commenting on their selections,
responding to their commands and assuming
control when they appear to be lost. This
mixed-initiative control scheme is based on an
encoding of students mistakes, which,
combined with the student model, permits a
precise diagnosis of students misconceptions
and of the adaptation of the remedy strategy
to their requirements and capabilities.
Operations "pause", "continue", "stop",
"inventory", '~here am I" and '~vhy" are also
supported in this mode, while the verbose
level is decided by the system itself after
consulting the student model. In place of
command "move to", C-MeT offers commands
'~hat if', which appears when more than one
alternatives exist for the next step, and which
permits the students to explore all possible
alternatives (by conducting a simulation of the
possible futures of the methodology
simulation), and "show me", which is a call of

the students to C-MeT for the presentation and
justification of the correct solution.

Finally, MeT-Judge (J-MeT) leaves control
of the simulation entirely at students hands, by
adopting a role of "judge" of their selections. J-
MeT only informs students on the validity of
their selections, using messages of minimal
semantic content. The only available
command is "inventory", but, depending on
authors choice, commands "pause" and
"background" may also be available.

4. AN EXAMPLE

As an example, in Figure 3, a tree-like
frame structure is shown for a part of the
domain knowledge of an application
developed with GENITOR that teaches the
Waterfall Model of Software Engineering. This
methodology consists of five steps called
"phases" (a phase is modeled with a frame
that is-a group of activities having slots
identifier=phase and level= 1): Requirements
Analysis & Definition, System & Software
Design, Implementation & Unit Testing,
Integration & System Testing, and Operation &
Maintenance. The current phase is
Requirements Analysis & Definition (as its
label slot states); its state slot has the value
"started".

The activity being carried out, which also
belongs to this phase, is Requirements
Definition. The frame that represents this
activity has state="started". As far as artifacts
are concerned, two of them are represented:
one, System Model, has been produced
during a previous activity (thus, its state is
"existing"), and the other, Design Report will
be produced by a future activity (thus, its state
is "not existing").

All the slots in the frame instances have a
certain value that is unique for each instance.
While the author decsribes the methodology
that will be taught, the system automatically
constructs the inheritance scheme and fills the

daisy
Rectangle

860 12). Zaharakis et al. / Microprocessing and Microprogramming 40 (1994) 855--860

appropriate slots. The values of certain slots
change with execution of the methodology
(i.e. slot state).

5. CONCLUSIONS

A part of the domain expert system of
GENITOR that is responsible for the tutoring of
procedural knowledge has been presented.
MeT cooperates with the declarative
knowledge tutor of GENITOR (DeT), which is
responsible for the presentation of units of
learning material that support the application
of procedural knowledge. To this end, a
special operation (called background) is
included in MeT tutoring interface. By using
this operation, students can combine both
MeT and DeT during methodology simulation
and get a list of topics of declarative
knowledge proposed by the system which
relate to the current simulation state.

Extensions that system authors are
considering include the provision of a flexible
structure that will enable authors describe
procedural knowledge of differing internal
structure and the use of an artificial neural net
for student modeling. In addition, the provision
of more agents during tutoring mode is
considered.

R E F E R E N C E S

1. J.R. Anderson, C.F. Boyle, A.T. Corbett
and M.W. Lewis, Cognitive Modelling and
Intelligent Tutoring. In Artificial Intelligence
and Learning Environments (W.J. Clancey
and E. Soloway, eds), MIT Press (1990), pp
7-49.

2. J.S. Brown, R.R. Burton and W.J. Clancey,
Pedagogical, natural language and
knowledge engineering techniques in
Sophie I, II and II1. In Intelligent Tutoring
Systems (D. Sleeman and J.S. Brown,
eds), Academic Press (1982), pp 227-282.

3. W.J. Clancey, Methodology for building an
Intelligent Tutoring System. In Artificial
Intelligence and Instruction (G.P. Kearsley,
ed). Addison-Wesley (1987), pp 193-227.

4. H. Hinje and J. van Berkum, A functional
architecture for intelligent simulation
learning environment. In Learning
Technology in the European Communities
(S.A. Cerri and J. Whiting, eds), Kluwer
Academic Publishers (1992), pp 585-593.
A. Kameas, S. Papadimitriou, P. Pintelas
and G. Pavlides, IMFG: an interactive
applications specification model with
phenomenological properties. Proceedings
of the 19th EUROMICRO Conference,
Barcelona, Spain, September 6-9, 1993.
A. Kameas and P. Pintelas, GENITOR: a
GENerator of Intelligent TutORing
applications. Technical Report TR 94-01,
Division of Computational Mathematics &
Informatics, Dept. of Mathematics, Univ. of
Patras, Greece (1994).
M. Minsky, A Framework for Representing
Knowledge. In Psycology of Computer
Vision (P. H. Wiston, ed), MIT Press,
Cambridge, Mass (1975).
P. Pintelas, A, Kameas and M. Crampes,
Computer-based Tools for Methodology
teaching. Proceedings of the 34th
International ADCIS Conference:
Empowering people through Technology,
Norfolk, USA, November 8-11, 1992, pp
341-355.
W. Reisig, A primer in Perri Net design.
Springer-Verlag, (1992).

10.J.W. Rickel, Intelligent Computer-Aided
Instruction: a survey organized around
system components. IEEE Trans. on
Systems, Man and Cybernetics, 19(1),
(1989), pp 40-57.

.

.

.

.

.

daisy
Rectangle

